Research Article – Phytochemistry

Isolation and characterization of Stigmasta-7, 22-dien-3-ol (α-Spinasterol) from Entada africana stem bark crude extract

A. Kwaji*^a, H. M. Adamu^b, I. Y. Chindo^b

^aDepartment of Chemistry, P. M. B. 127 Gombe State University, Gombe, Nigeria
^bDepartment of Chemistry, P. M. B. 0248 Abubakar Tafawa Balewa University, Bauchi, Nigeria

(Received: 19-05-2019; Accepted 01-06-2019; Published Online 06-06-2019)

* Corresponding author: E-mail: andrewkwaji@yahoo.com; Tel: +2348036433710

Abstract

The phytochemical investigation of the stem bark extracts of Entada africana led to the isolation and characterization of Stigmasta-7,22-dien-3-ol from the dichloromethane soluble portion of acetone/methanol (1:1v/v) crude extract. The powdered stem bark sample of Entada africana was defatted with hexane and extracted with acetone/methanol (1:1v/v) mixture. The dichloromethane soluble fraction was purified on a low pressure column containing silica gel 60 (60-200 mesh). The purification afforded an isolate coded Enac3 (85 mg) with Rf value of 0.404 in hexane/ethyl acetate (4:1). The isolate was characterized using IR, NMR data and in comparison with literature. Analysis of spectroscopic data and literature comparison suggests Enac3 as stigmasta-7, 22-dien-3-ol. The isolation of stigmasta-7, 22-dien-3-ol from the stem bark of Entada africana suggests the presence of useful bioactive principles which could be exploited for medicinal purposes.

Keywords: Entada africana, Isolation, Stigmasta-7, 22-dien-3-ol, Characterization

Introduction

Entada africana is a medicinal plant of high value throughout the West African sub-region due to its usefulness in the management and treatment of several ailments and diseases such as diabetes, fever, hypertension, respiratory tract infections, gonorrhea, typhoid fever, stomach upset and as an arrow poison antidote among others in traditional medicine practice (Bako et al., 2005, Tibiri et al., 2010, Mbatchou et al., 2011). Various studies had substantiated the usefulness of Entada africana in traditional medicine practice such as the existence of phytochemical substances with significant antioxidant properties (Tibiri et al., 2010) and antibacterial activity (Aboaba et al., 2006; Marthe et al., 2014; Ifemeje et al., 2014). Ahua et al. (2007) and Njayou et al. (2013) reported the antileishmanial, anti-inflammatory, wound healing and antibacterial properties of Entada africana.

Additionally, the root extract was found to demonstrate significant hepatoprotective, anti-inflammatory and antioxidant activity (Njayou et al., 2013 and Owona et al., 2013). The analgesic, anti-angiogenic and antimalarial, properties of Entada africana were also reported by Karou et al. (2011), Ezenyiet et al. (2014) and Germanô et al. (2014). In another study, the anti-hepatitis C virus activity was also reported by Tietcheu et al. (2014). Despite the medicinal potentials of Entada africana, there exist only few studies on the isolation and characterization of its phytoconstituents. These studies include the isolation of acidic wound healing polysaccharides (Diallo et al., 2001), myricetin and derivatives (Montoro et al., 2005), antiproliferative triterpene saponins (Cioffi et al., 2006) and betulin (Kwaji et al., 2018) based on available literature. In furtherance of our effort to make more information available on the chemical constituents of Entada africana, we report the isolation and characterization of Stigmasta-7, 22-dien-3-ol from Entada africana stem bark crude extract for the first time.

Materials and methods

Apparatus/Equipments

Glass column (75 cm x 35 mm), Silica gel 60 (60 – 200 mesh), 100 mL and 50 mL conical flasks, Mini-spatula, Pencil and Transparent Meter Rule, Commercially prepared thin layer chromatography, TLC, plate (silica gel 60 F₂₅₄, Merck Germany, 20 x 20 cm, 1 mm thick), Chromatogram and Iodine tanks. Recirculating Cooler (Stuart-SRC4). Digital Water Bath Stuart RE300DB, Vacuum Pump CAT. RE3022C SN-000100188, Rotatory Evaporator (Stuart RE300/MS), Digital Electronic balance ae-ADAM PW254 (Max 250 g, Sensitivity = 0.0001 g).

IR spectrum was recorded on PerkinElmer Universal ATR (100 FT-IR spectrometer) while the ¹H and ¹³C NMR spectra were recorded using NMR 400 MHz Bruker Avance. Deuterated chloroform (CDCl₃) was used as a solvent for the isolate. Sample analysis was carried out at the Department of Chemistry, Kwazulu-Natal University, South Africa.

Reagents and Solvents

Solvents (n-Hexane, Dichloromethane (DCM), Ethyl acetate, Methanol, Diethyl ether, and Acetone) LOBA Chemie Analytical grade Reagents.

Collection, identification and preparation of Sample

The sample collection was carried out by a herbalist on 26/11/2014 and subsequently identified by a botanist Dr K. P. Yoriyo of Biological Sciences Department Gombe State University and assigned Voucher No. F. H. J. 227. The stem bark was dried under shade for twenty-one days at normal atmospheric temperature on a clean surface. After achieving substantial moisture reduction, sample was...
powdered with a milling machine. The powdered plant sample was kept safe until use.

Extraction was carried out on the plant material using solvents of varying polarity. A portion of powdered *Entada africana* stem bark sample approximately 2.70 Kg was soaked in 10 liters of hexane for five days and defatted three times to obtain hexane filtrate. The combined filtrate was concentrated on a rotary evaporator at 45°C to obtain 46.25 gram hexane extract. The marc was shade dried and re-extracted with 10 Liters of acetone/methanol (1:1v/v) mixture three times. The combined volume of extracts was also concentrated over rotary evaporator to obtain 134 grams of Extract. The maceration technique (Tiwari et al., 2011) was adopted for the extraction of plant active principles from their matrix.

The isolation of stigmasta-7, 22-dien-3-ol was achieved by adopting a slightly modified procedure of Teke et al. (2011). About 9.40 grams of dichloromethane soluble fraction of acetone/methanol extract of the *Entada africana* crude extract was pre-adsorbed onto silica gel 60 and then loaded to a column packed with silica gel 60 (60-200 mesh). Gradient elution was performed with hexane/ethyl acetate at 5% increase in volume of eluting solvent; (100:00), (95:05), (90:10), (85:15), (80:20), (75:25), etc. to yield several fractions of 100 mL each. On the basis of their thin layer chromatography (TLC) profiles, fractions 43-47 were combined and concentrated on a rotary evaporator at 45°C. After washing and recrystallization from methanol, 85 mg of a pure Isolate coded Enac3 was obtained with Rf value of 0.404 in hexane/ethyl acetate (4:1).

Characterization of Enac3

On subjection of Enac3 to IR spectroscopy, several absorption bands were observed (Table 1), notably 3379.0 cm⁻¹ corresponding to alcoholic O-H stretch, 2935.19 cm⁻¹ is C-H stretch of alkanes, 2868.19 cm⁻¹ is another C-H stretch band of alkanes, 1640.38 cm⁻¹ is a C=C stretch of alkenes that appears as a weak band, 1446.61 cm⁻¹ is the (CH₂)₂ bending stretch of cycloalkanes, 1382.03 cm⁻¹ corresponds to O-H deformations of alcohols and 1038 cm⁻¹ is C-H stretch of alkenes. The above frequencies are diagnostic of those of steroids (Billah et al., 2013).

Table 1. FT-IR Spectrum of Enac3

<table>
<thead>
<tr>
<th>S/No</th>
<th>Frequency (cm⁻¹)</th>
<th>Type of Vibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3379.00</td>
<td>O-H stretch of alcohols</td>
</tr>
<tr>
<td>2</td>
<td>2935.19</td>
<td>C-H stretching of alkanes</td>
</tr>
<tr>
<td>3</td>
<td>2868.19</td>
<td>C-H aliphatic symmetric stretching</td>
</tr>
<tr>
<td>4</td>
<td>1640.38</td>
<td>C=C stretching of alkenes</td>
</tr>
<tr>
<td>5</td>
<td>1446.61</td>
<td>C-H stretch of cycloalkanes</td>
</tr>
<tr>
<td>6</td>
<td>1382.03</td>
<td>O-H deformation of alcohols</td>
</tr>
<tr>
<td>7</td>
<td>1038.60</td>
<td>C-H stretch of alkenes</td>
</tr>
</tbody>
</table>

Table 2. Chemical Shifts (δ) of ¹³C- and ¹H-NMR for Enac3 & Literature data (Meneses-Sagrero et al., 2017*)

<table>
<thead>
<tr>
<th>Carbon Enac3</th>
<th>δH</th>
<th>δC</th>
<th>δC</th>
<th>δH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.06</td>
<td>37.154</td>
<td>37.1</td>
<td>1.09, 1.82</td>
</tr>
<tr>
<td>2</td>
<td>1.32</td>
<td>31.49</td>
<td>31.5</td>
<td>1.39, 1.77</td>
</tr>
<tr>
<td>3</td>
<td>3.59</td>
<td>71.07</td>
<td>71.1</td>
<td>3.6</td>
</tr>
<tr>
<td>4</td>
<td>1.28</td>
<td>38.01</td>
<td>38.0</td>
<td>1.27, 1.70</td>
</tr>
<tr>
<td>5</td>
<td>1.41</td>
<td>40.28</td>
<td>40.3</td>
<td>1.4</td>
</tr>
<tr>
<td>6</td>
<td>1.75</td>
<td>29.65</td>
<td>29.4</td>
<td>1.22, 1.74</td>
</tr>
<tr>
<td>7</td>
<td>5.14</td>
<td>117.46</td>
<td>117.5</td>
<td>5.18</td>
</tr>
<tr>
<td>8</td>
<td>139.57</td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>9</td>
<td>1.51</td>
<td>49.47</td>
<td>49.5</td>
<td>1.66</td>
</tr>
<tr>
<td>10</td>
<td>34.23</td>
<td></td>
<td></td>
<td>CH₂</td>
</tr>
<tr>
<td>11</td>
<td>1.52</td>
<td>21.55</td>
<td>21.6</td>
<td>1.48</td>
</tr>
<tr>
<td>12</td>
<td>2.00</td>
<td>39.47</td>
<td>39.6</td>
<td>1.23, 2.0</td>
</tr>
<tr>
<td>13</td>
<td>43.3</td>
<td></td>
<td></td>
<td>CH₂</td>
</tr>
<tr>
<td>14</td>
<td>1.78</td>
<td>51.25</td>
<td>51.15</td>
<td>1.81</td>
</tr>
<tr>
<td>15</td>
<td>1.41</td>
<td>23.02</td>
<td>23.0</td>
<td>1.40, 1.52</td>
</tr>
<tr>
<td>16</td>
<td>1.27</td>
<td>28.49</td>
<td>28.5</td>
<td>1.25</td>
</tr>
<tr>
<td>17</td>
<td>1.24</td>
<td>55.92</td>
<td>55.95</td>
<td>1.25</td>
</tr>
<tr>
<td>18</td>
<td>0.57</td>
<td>12.05</td>
<td>12.05</td>
<td>0.55</td>
</tr>
<tr>
<td>19</td>
<td>0.72</td>
<td>13.04</td>
<td>13.0</td>
<td>0.8</td>
</tr>
<tr>
<td>20</td>
<td>2.03</td>
<td>40.81</td>
<td>40.8</td>
<td>2.05</td>
</tr>
<tr>
<td>21</td>
<td>1.03</td>
<td>21.37</td>
<td>21.4</td>
<td>1.02</td>
</tr>
<tr>
<td>22</td>
<td>5.17</td>
<td>138.16</td>
<td>138.15</td>
<td>5.17</td>
</tr>
<tr>
<td>23</td>
<td>5.07</td>
<td>129.46</td>
<td>129.48</td>
<td>5.09</td>
</tr>
<tr>
<td>24</td>
<td>1.60</td>
<td>51.25</td>
<td>51.26</td>
<td>1.55</td>
</tr>
<tr>
<td>25</td>
<td>1.50</td>
<td>31.87</td>
<td>31.9</td>
<td>1.55</td>
</tr>
<tr>
<td>26</td>
<td>0.85</td>
<td>21.08</td>
<td>21.2</td>
<td>0.85</td>
</tr>
<tr>
<td>27</td>
<td>0.83</td>
<td>18.99</td>
<td>19.0</td>
<td>0.84</td>
</tr>
<tr>
<td>28</td>
<td>1.14</td>
<td>25.39</td>
<td>25.4</td>
<td>1.18, 1.42</td>
</tr>
<tr>
<td>29</td>
<td>0.80</td>
<td>12.23</td>
<td>12.2</td>
<td>0.81</td>
</tr>
</tbody>
</table>

From Table 2, the proton, H-3 corresponds to a sterol moiety and appears as a triplet of doublet at δH 3.59 ppm. The angular methyl protons at δH 0.57 and 0.72 ppm corresponds to C18 and C19 protons respectively. The protons at δ 5.17 (1H, s) and 5.07 (1H, s) and the carbonyl protons at δH 5.39 ppm are typical of an olefinic steroid nucleus. The olefinic protons which appeared as characteristic downfield signals at 5.17 and 5.07 ppm are identical with the chemical shifts of H-22 and H-23 of steroids. Additionally, two doublets at δ 0.84 (3H, d) and 0.83 (3H, d) can be assigned...
to H-26 and H-27. These assignments are consistent with reported values (Franca et al., 2016).

From the C-13 NMR spectrum values (Table 2), the signals at 139.57 and 117.46 ppm are characteristic and assignable to C-8 and C-7 double bond respectively while the signal at δc 71.07 ppm is due the C-3 hydroxyl group. The signals at 12.05 ppm and 13.04 ppm are due to methyl groups at C-18 and C-19 respectively. The DEPT spectrum indicates the presence of six methyl carbons (C-18, C-19, C-21, C-26, C-27 and C-29), nine methylene carbons (C-1, C-2, C-4, C-6, C-11, C-12, C-15, C-16 and C-28), eleven methine carbons (C-3, C-5, C-7, C-9, C-14, C-17, C-20, C-22, C-23, C-24 and C-25) and three quaternary carbons (C-8, C-10 and C-13). These observations are consistent with literature (Fufa et al., 2018). On the strength of spectra evidence (Table 2 & appendix 1) and in comparison with literature reports (Jessica et al., 2017), Enac3 is Stigmastera-7, 22-dien-3-ol (α-spinasterol) with the molecular structure below (Figure 1).

![Figure 1: Structure of Stigmastera-7, 22-dien-3-ol](https://www.phoenixpub.org/journals/index.php/jaar)

Alpha(α)-Spinasterol was reportedly found to exhibit interesting biological properties such as the demonstration of antiproliferative activity against the cancer cell lines HeLa and RAW 264.7 (Meneses-Sagrero et al., 2017). It was also found to cause reduction in cholesterol levels of plasma and liver and possesses anti-inflammatory properties (Jessica et al., 2017).

Acknowledgement

I wish to thank Prof. H. M. Adamu and Prof. I. Y. Chindo for guidance during the course of the Research Work. My sincere thanks also go to Dr. Ismail Abubakar for assistance with the spectroscopic analysis of the isolate. Above all, I am grateful to Gombe State University Management who provided the opportunity for Research Work.

References

https://www.phoenixpub.org/journals/index.php/jaar
Marthe, E. S. T, Aime, G. F., Armelle, T. M., Ernestine, T. N.,
Jackson, A. S., Francesco, K. T. Nyassé, B and Kuete, V.
(2014). Activities of Selected Medicinal Plants against
Multidrug Resistant Gram negative bacteria in

Antibacterial Activity of Phytochemicals from *Acacia
nilotica, Entada africana* and *Mimosa nigra L.* on
Salmoella typhi. *Journal of Animal and Plant Sciences*,
10(1), 1248-1258.

Meneses-Sagrero, S. E., Navarro-Navarro, M., Ruiz-Bustos,
E., Del-Toro-Sanchez, C. L., Jimenez-Estrada, M., and
Spinasterol isolated from *Stegnosperma halimifolium*
(Benth, 1844). *Saudi Pharmaceutical Journal*, 25(8),
1137-1143

Montoro, P., Braca, A., Pizza, C., and De Tommasi, N.
(2005).Structure antioxidant activity relationships of
flavonoids from different plants Species. *Food
Chemistry*, 92, 411-414.

Njayou, F. N., Aboudi, E. C. E., Tandjang, M. K., Tchana, A.
Hepatoprotective and antioxidant activities of stem bark
extract of *Khaya grandifoliola* (Welw) CDC and *Entada
africana* Guill. Et Perr. *Journal of Natural Products*,
6,73-80.

Owona, B. A., Njayou, N. F., Lauper, S. A., Schluesener, H.
africana* Suppresses Lipopolysaccharide-induced
Inflammation in RAW 264.7 Cells. *Journal of
Ethnopharmacology*, 149, 162-168.

Teke, G.N., Lunga, P.K., Wabo, H.K.,Kuiate, J-R., Vilarem,
Antimicrobial and antioxidant properties of methanol
extract, fractions and compounds from the stem bark of
*Entada abyssinica*Stend ex A. Satabie. *BMC
Complementary and Alternative Medicine*, 11,57-64.

Tibiri, A., Sawadogo, R. W., Ouedraogo, Banzouzi, J. T.,
Antioxidant Activity, Total Phenolic and Flavonoid
Content of *Entada africana* Guill. Et Perr. (Mimosaceae)
Organ Extracts. *Research Journal of Medical Sciences*,
4(2),81-87.

Tietcheu, B. R. G., Sass, G., Njayou, N. F., Mkounga, P.,
Virus Activity of crude extract and fractions of *Entada
africana* in genotype 1b Replicon Systems. *The American

Tiwari, P., Kumar, B., Kaur, M., Kaur, G. and Kaur, H.
(2011).Phytochemical screening and extraction; A
review. *International Pharmacuetica Sciencia*, 1(1), 98-
106.